Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Dr. R. Picht

Telefon: +49(345)55-24756

Email: picht@informatik.uni-halle.de

Halle, 18. April 2006

Programmiersprachen (SS 2006)

Übungsserie 3

Aufgabe 1 (Fixpunktoperator)

Der Term ZZ mit $Z = \lambda z.\lambda x.x(zzx)$ ist ein Fixpunktoperator. Zeigen Sie es.

Aufgabe 2 (Darstellung natürlicher Zahlen)

Beweisen Sie mit der in der Vorlesung gegebenen Funktion succ:

$$succ^n 0 = \lambda f x. f^n x, n \in \mathbb{N}$$

Aufgabe 3 (Reihenfolge der Reduktionen)

- a. Reduzieren Sie den folgenden Ausdruck nach der leftmost-outermost-Strategie (normale Reduktion) und führen Sie jeden Reduktionsschritt auf.
 Geben Sie zuerst für den angegebenen Ausdruck alle Redexe an, indem Sie die Terme unterstreichen, auf die eine β- bzw. η-Reduktion angewandt werden kann.
 (λx.(λf.λx.fx)((λy.λz.x)x))zy
- b. Reduzieren Sie den folgenden Ausdruck. Verwenden Sie die leftmost-innermost-Strategie (applikative Reduktion) und führen Sie jeden Reduktionsschritt auf. Geben Sie zuerst alle Redexe an.

$$(\lambda z.(\lambda x.x)zz)(\lambda y.(\lambda x.x((\lambda f.x)g))y)$$

Aufgabe 4 (Rechnen im λ -Kalkül)

Mit den in der Vorlesung definierten Funktionen berechnen Sie folgende λ -Terme und verdeutlichen Sie sich so ihre Funktionsweise:

- a. not true
- b. and false true

- c. or false false
- d. if false A B

Aufgabe 5 (Funktionsdefinition)

Die Addition und Multiplikation wurden in der Vorlesung durch fun plus und fun times definiert.

- a. Zeigen Sie, daß gilt: n (plus m) 0 = times n m.
- b. Finden Sie einen λ -Ausdruck für das Potenzieren.

Aufgabe 6 (Multiplikation)

Im λ -Kalkül ist die Multiplikation definiert als fun times = λ m n.n (plus m) 0. Rechnen Sie nach! Verwenden Sie die Darstellung der natürlichen Zahlen und die Definition von plus aus der Vorlesung.

- a. $m \cdot 0 = 0$
- b. $m \cdot 1 = m$
- c. $m \cdot 2 = 2m$